Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels
نویسندگان
چکیده
Large conductance Ca2+-activated K+ channels (BK channels) gate open in response to both membrane voltage and intracellular Ca2+ The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca2+ sensor. How these voltage and Ca2+ sensors influence the common activation gate, and interact with each other, is unclear. A previous study showed that a BK channel core lacking the entire cytoplasmic gating ring (Core-MT) was devoid of Ca2+ activation but retained voltage sensitivity (Budelli et al. 2013. Proc. Natl. Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1313433110). In this study, we measure voltage sensor activation and pore opening in this Core-MT channel over a wide range of voltages. We record gating currents and find that voltage sensor activation in this truncated channel is similar to WT but that the coupling between voltage sensor activation and gating of the pore is reduced. These results suggest that the gating ring, in addition to being the Ca2+ sensor, enhances the effective coupling between voltage sensors and the PGD. We also find that removal of the gating ring alters modulation of the channels by the BK channel's β1 and β2 subunits.
منابع مشابه
Molecular mechanism of pharmacological activation of BK channels.
Large-conductance voltage- and Ca(2+)-activated K(+) (Slo1 BK) channels serve numerous cellular functions, and their dysregulation is implicated in various diseases. Drugs activating BK channels therefore bear substantial therapeutic potential, but their deployment has been hindered in part because the mode of action remains obscure. Here we provide mechanistic insight into how the dehydroabiet...
متن کاملMg2+-dependent Regulation of BK Channels: Importance of Electrostatics
A signature feature of large conductance, calcium-and voltage-activated K + channels (now usually termed " BK " channels) is their dual regulation by two physiological signals, cytosolic Ca 2+ and membrane voltage. This dual-sensing capacity of BK channels distinguishes them from other voltage-dependent K + channels in terms of the physiological roles they can play, allowing their voltage-sensi...
متن کاملHeme Regulates Allosteric Activation of the Slo1 BK Channel
Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531-535). Here we investigated the ...
متن کاملThe NH2 Terminus of RCK1 Domain Regulates Ca2+-dependent BKCa Channel Gating
Large conductance, voltage- and Ca2+-activated K+ (BK(Ca)) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four alpha subunits of BK(Ca) may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of...
متن کاملHighlights from the Literature
Question: Do Mg2+ and Ca2+ work through functionally similar mechanisms to activate BK channels? Background: BK channels are large conductance Ca2+ and voltage-activated K+ channels, which allow K+ to leave the cytoplasm and promote membrane hyperpolarization under physiological conditions when activated by membrane potential and/or intracellular Ca2+. In addition to these two primary signals, ...
متن کامل